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 Spark has a rich library of cluster computing capabilities
• The Spark library is written in Scala

 Spark provides APIs for numerous languages, including:
• Scala
• Java
• Python
• R

 We'll use the Scala API
• We'll use the Spark shell initially, because it's an extremely 

productive way to learn Spark
• Then we'll see how to write full Scala applications later

Overview of the Spark Library
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 The Spark API comprises two important abstractions
• SparkContext
• Resilient Distributed Datasets (RDD)

 Applications use these abstractions to connect to a Spark 
cluster, and to use the cluster resources
• See following slides for details

Important Spark Abstractions
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 SparkContext is the entry-point class in the Spark API
• A Spark app must create an instance of this class, to represent a 

connection to a Spark cluster

 SparkContext has various constructors
• Default ctor gets config settings from system properties 

• Alternatively you can provide config parameters explicitly

Overview of SparkContext
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val sc = new SparkContext()val sc = new SparkContext()

val config = new SparkConf()
                 .setMaster("spark://somehost:port")
                 .setAppName("my big app")

val sc = new SparkContext(config)

val config = new SparkConf()
                 .setMaster("spark://somehost:port")
                 .setAppName("my big app")

val sc = new SparkContext(config)



 The Spark shell already provides a SparkContext object
• Available as sc

• Here's the proof 

Accessing a SparkContext in the Spark Shell
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 RDD is the primary data abstraction mechanism in Spark
• It's an abstract class in the Spark API
• Represents a collection of partitioned data elements that can be 

operated on in parallel

 Conceptually an RDD is similar to a Python list except…
• RDD represents a distributed dataset
• RDD supports lazy operations (see later)

 The following slide describes the key features of an RDD

Overview of Resilient Distributed Datasets (RDD)
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 Immutable
• An RDD is an immutable data structure
• Once created, it can't be modified 
• Operations that seem to modify an RDD actually return a new RDD

 Partitioned
• Data represented by an RDD is split into partitions
• These partitions are generally distributed across a cluster of nodes

Key features of RDD (1 of 2)
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 Fault tolerant
• RDD is designed to be fault tolerant, to cope with the fact nodes in 

a cluster are liable to failure
• RDD automatically handles node failures - when a node fails, Spark 

reconstructs the lost RDD partitions on another node

 Uniform API
• RDD is an abstract class
• Provides a uniform API for various data sources
• E.g. HadoopRDD, ParallelCollectionRDD, JdbcRDD, CassandraRDD

 Fast
• Spark allows RDDs to be cached or persisted in memory
• Magnitudes of faster than operating on non-cached RDDs

Key features of RDD (2 of 2)
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 Overview
 Creating an RDD from a text file
 Creating an RDD from all text files
 Creating an RDD from a sequence file

2. Creating an RDD
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 RDD is an abstract class
• You can't instantiate directly
• Instead you use factory methods in the SparkContext class

 In this section we'll show various SparkContext 
methods for creating RDDs

 You can also create an RDD by transforming an existing 
RDD - see later

Overview
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 You can create an RDD from an existing text file
• Call textFile() and specify a file or directory
• The directory could on a local file system, HDFS, or any other 

Hadoop-supported storage system
• Returns RDD of strings, each element represents 1 line in the file

 Examples
• Create an RDD from a file or directory on HDFS

• Read all compressed files in a directory

• You can pass a 2nd arg, specifying the number of partitions (default 
is 1, you can specify a higher number to increase parallelization)

Creating an RDD from a Text File
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val rdd = sc.textFile("hdfs://namenode:9000/some-file-or-directory")val rdd = sc.textFile("hdfs://namenode:9000/some-file-or-directory")

val rdd = sc.textFile("hdfs://namenode:9000/some-directory/*.gz")val rdd = sc.textFile("hdfs://namenode:9000/some-directory/*.gz")



 You can create an RDD from all text files in a directory
• Call wholeTextFile() and specify a directory
• The directory could be on any file system, as discussed previously
• Returns key-value pairs (keys are file paths, values are file 

contents)

 Example
• Create an RDD from all .txt files in a directory

Creating an RDD from All Text Files
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val rdd = sc.wholeTextFiles("hdfs://namenode:9000/some-directory/*.txt")val rdd = sc.wholeTextFiles("hdfs://namenode:9000/some-directory/*.txt")



 You can create an RDD from a sequence file
• Call sequenceFile() and specify a sequence file that contains 

key-value pairs
• You must also specify the data types of the keys and values
• The file could be on any file system, as discussed previously
• Returns key-value pairs from the sequence file

 Example
• Create an RDD from a sequence file, where the keys and values 

are strings

Creating an RDD from a Sequence File
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val rdd = sc.sequenceFile[String,String]("some-file")val rdd = sc.sequenceFile[String,String]("some-file")



 Overview
 Types of RDD operations
 Example scenario
 Example code
 Viewing the output

3. Working with RDDs
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 Spark applications process data by using methods defined 
in the RDD class and subclasses
• These methods are known as "RDD operations"

 You can use these operations on a wide range of data
• From a few bytes to several petabytes in size
• On the local file system or on a distributed storage system

Overview
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 RDD operations are categorized into two types…

 Transformations
• Create new RDD by performing a computation on source RDD
• E.g. union(), map(), filter()
• Can operate on data distributed across a cluster of nodes
• Note: RDD creation and transformation operations are lazy - we'll 

discuss this later

 Actions
• Cause a job to be executed
• Return a value to the driver program
• E.g. collect(), min(), max(), saveAsTextFile()

Types of RDD Operations
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 To illustrate the end-to-end process of working with RDDs, 
we'll consider the following simple scenario
• Create an RDD from a text file
• Determine the lengths of all lines
• Save the lengths to a file
• View the output

 For this example we will use the sample text file:
• Macbeth.txt

Example Scenario
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 Create an RDD from a text file

 Determine the lengths of all lines
• Via the map() transformation operation

 Save the lengths to a file
• Via the saveAsTextFile() action operation
• Specify the name of the output folder

Example Code
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val inputFile = sc.textFile("Macbeth.txt")val inputFile = sc.textFile("Macbeth.txt")

val lengths = inputFile map { line => line.length }val lengths = inputFile map { line => line.length }

lengths.saveAsTextFile("lengths-output")lengths.saveAsTextFile("lengths-output")



 The code on the previous slide created a folder as follows:

 Here's a listing of part-00000 (first few lines) 

Viewing the Output
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Any Questions?
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