
Introduction to the Spark API

1. Essential concepts

2. Creating an RDD

3. Working with RDDs

Contents

2

 Overview of the Spark library
 Important Spark abstractions
 Overview of SparkContext
 Accessing a SparkContext in the Spark shell
 Overview of Resilient Distributed Datasets (RDD)
 Key features of RDD

1. Essential Concepts

3

 Spark has a rich library of cluster computing capabilities
• The Spark library is written in Scala

 Spark provides APIs for numerous languages, including:
• Scala
• Java
• Python
• R

 We'll use the Scala API
• We'll use the Spark shell initially, because it's an extremely

productive way to learn Spark
• Then we'll see how to write full Scala applications later

Overview of the Spark Library

4

 The Spark API comprises two important abstractions
• SparkContext
• Resilient Distributed Datasets (RDD)

 Applications use these abstractions to connect to a Spark
cluster, and to use the cluster resources
• See following slides for details

Important Spark Abstractions

5

 SparkContext is the entry-point class in the Spark API
• A Spark app must create an instance of this class, to represent a

connection to a Spark cluster

 SparkContext has various constructors
• Default ctor gets config settings from system properties

• Alternatively you can provide config parameters explicitly

Overview of SparkContext

6

val sc = new SparkContext()val sc = new SparkContext()

val config = new SparkConf()
 .setMaster("spark://somehost:port")
 .setAppName("my big app")

val sc = new SparkContext(config)

val config = new SparkConf()
 .setMaster("spark://somehost:port")
 .setAppName("my big app")

val sc = new SparkContext(config)

 The Spark shell already provides a SparkContext object
• Available as sc

• Here's the proof 

Accessing a SparkContext in the Spark Shell

7

 RDD is the primary data abstraction mechanism in Spark
• It's an abstract class in the Spark API
• Represents a collection of partitioned data elements that can be

operated on in parallel

 Conceptually an RDD is similar to a Python list except…
• RDD represents a distributed dataset
• RDD supports lazy operations (see later)

 The following slide describes the key features of an RDD

Overview of Resilient Distributed Datasets (RDD)

8

 Immutable
• An RDD is an immutable data structure
• Once created, it can't be modified
• Operations that seem to modify an RDD actually return a new RDD

 Partitioned
• Data represented by an RDD is split into partitions
• These partitions are generally distributed across a cluster of nodes

Key features of RDD (1 of 2)

9

 Fault tolerant
• RDD is designed to be fault tolerant, to cope with the fact nodes in

a cluster are liable to failure
• RDD automatically handles node failures - when a node fails, Spark

reconstructs the lost RDD partitions on another node

 Uniform API
• RDD is an abstract class
• Provides a uniform API for various data sources
• E.g. HadoopRDD, ParallelCollectionRDD, JdbcRDD, CassandraRDD

 Fast
• Spark allows RDDs to be cached or persisted in memory
• Magnitudes of faster than operating on non-cached RDDs

Key features of RDD (2 of 2)

10

 Overview
 Creating an RDD from a text file
 Creating an RDD from all text files
 Creating an RDD from a sequence file

2. Creating an RDD

11

 RDD is an abstract class
• You can't instantiate directly
• Instead you use factory methods in the SparkContext class

 In this section we'll show various SparkContext
methods for creating RDDs

 You can also create an RDD by transforming an existing
RDD - see later

Overview

12

 You can create an RDD from an existing text file
• Call textFile() and specify a file or directory
• The directory could on a local file system, HDFS, or any other

Hadoop-supported storage system
• Returns RDD of strings, each element represents 1 line in the file

 Examples
• Create an RDD from a file or directory on HDFS

• Read all compressed files in a directory

• You can pass a 2nd arg, specifying the number of partitions (default
is 1, you can specify a higher number to increase parallelization)

Creating an RDD from a Text File

13

val rdd = sc.textFile("hdfs://namenode:9000/some-file-or-directory")val rdd = sc.textFile("hdfs://namenode:9000/some-file-or-directory")

val rdd = sc.textFile("hdfs://namenode:9000/some-directory/*.gz")val rdd = sc.textFile("hdfs://namenode:9000/some-directory/*.gz")

 You can create an RDD from all text files in a directory
• Call wholeTextFile() and specify a directory
• The directory could be on any file system, as discussed previously
• Returns key-value pairs (keys are file paths, values are file

contents)

 Example
• Create an RDD from all .txt files in a directory

Creating an RDD from All Text Files

14

val rdd = sc.wholeTextFiles("hdfs://namenode:9000/some-directory/*.txt")val rdd = sc.wholeTextFiles("hdfs://namenode:9000/some-directory/*.txt")

 You can create an RDD from a sequence file
• Call sequenceFile() and specify a sequence file that contains

key-value pairs
• You must also specify the data types of the keys and values
• The file could be on any file system, as discussed previously
• Returns key-value pairs from the sequence file

 Example
• Create an RDD from a sequence file, where the keys and values

are strings

Creating an RDD from a Sequence File

15

val rdd = sc.sequenceFile[String,String]("some-file")val rdd = sc.sequenceFile[String,String]("some-file")

 Overview
 Types of RDD operations
 Example scenario
 Example code
 Viewing the output

3. Working with RDDs

16

 Spark applications process data by using methods defined
in the RDD class and subclasses
• These methods are known as "RDD operations"

 You can use these operations on a wide range of data
• From a few bytes to several petabytes in size
• On the local file system or on a distributed storage system

Overview

17

 RDD operations are categorized into two types…

 Transformations
• Create new RDD by performing a computation on source RDD
• E.g. union(), map(), filter()
• Can operate on data distributed across a cluster of nodes
• Note: RDD creation and transformation operations are lazy - we'll

discuss this later

 Actions
• Cause a job to be executed
• Return a value to the driver program
• E.g. collect(), min(), max(), saveAsTextFile()

Types of RDD Operations

18

 To illustrate the end-to-end process of working with RDDs,
we'll consider the following simple scenario
• Create an RDD from a text file
• Determine the lengths of all lines
• Save the lengths to a file
• View the output

 For this example we will use the sample text file:
• Macbeth.txt

Example Scenario

19

 Create an RDD from a text file

 Determine the lengths of all lines
• Via the map() transformation operation

 Save the lengths to a file
• Via the saveAsTextFile() action operation
• Specify the name of the output folder

Example Code

20

val inputFile = sc.textFile("Macbeth.txt")val inputFile = sc.textFile("Macbeth.txt")

val lengths = inputFile map { line => line.length }val lengths = inputFile map { line => line.length }

lengths.saveAsTextFile("lengths-output")lengths.saveAsTextFile("lengths-output")

 The code on the previous slide created a folder as follows:

 Here's a listing of part-00000 (first few lines)

Viewing the Output

21

22

Any Questions?

	Slide 1
	Contents
	1. Essential Concepts
	Overview of the Spark Library
	Important Spark Abstractions
	Overview of SparkContext
	Accessing a SparkContext in the Spark Shell
	Overview of Resilient Distributed Datasets (RDD)
	Key features of RDD (1 of 2)
	Key features of RDD (2 of 2)
	2. Creating an RDD
	Overview
	Creating an RDD from a Text File
	Creating an RDD from All Text Files
	Creating an RDD from a Sequence File
	3. Working with RDDs
	Overview
	Types of RDD Operations
	Example Scenario
	Example Code
	Viewing the Output
	Any Questions?

